Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data Part I: Diffusion Maps

نویسنده

  • R. R. COIFMAN
چکیده

We provide a framework for structural multiscale geometric organization of graphs and subsets of Rn. We use diffusion semigroups to generate multiscale geometries in order to organize and represent complex structures. We show that appropriately selected eigenfunctions or scaling functions of Markov matrices, which describe local transitions, lead to macroscopic descriptions at different scales. The process of iterating or diffusing the Markov matrix is seen as a generalization of some aspects of the Newtonian paradigm, in which local infinitesimal transitions of a system lead to global macroscopic descriptions by integration. In Part I below, we provide a unified view of ideas from data analysis, machine learning and numerical analysis. In Part II [1], we augment this approach by introducing fast orderN algorithms for homogenization of heterogeneous structures as well as for data representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.

We provide a framework for structural multiscale geometric organization of graphs and subsets of R(n). We use diffusion semigroups to generate multiscale geometries in order to organize and represent complex structures. We show that appropriately selected eigenfunctions or scaling functions of Markov matrices, which describe local transitions, lead to macroscopic descriptions at different scale...

متن کامل

Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods.

In the companion article, a framework for structural multiscale geometric organization of subsets of R(n) and of graphs was introduced. Here, diffusion semigroups are used to generate multiscale analyses in order to organize and represent complex structures. We emphasize the multiscale nature of these problems and build scaling functions of Markov matrices (describing local transitions) that le...

متن کامل

Geometric diffusions for the analysis of data from sensor networks.

Harmonic analysis on manifolds and graphs has recently led to mathematical developments in the field of data analysis. The resulting new tools can be used to compress and analyze large and complex data sets, such as those derived from sensor networks or neuronal activity datasets, obtained in the laboratory or through computer modeling. The nature of the algorithms (based on diffusion maps and ...

متن کامل

A Useful Family of Stochastic Processes for Modeling Shape Diffusions

 One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...

متن کامل

ANT COLONY ALGORITHMS FOR NONLINEAR ANALYSIS AND OPTIMAL DESIGN OF STRUCTURES

In this paper nonlinear analysis of structures are performed considering material and geometric nonlinearity using force method and energy concepts. For this purpose, the complementary energy of the structure is minimized using ant colony algorithms. Considering the energy term next to the weight of the structure, optimal design of structures is performed. The first part of this paper contains ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005